Engaging students in combinatorics research

44th Australasian Combinatorics Conference December 13, 2022

My Context (Valparaiso University)

Introduction

Words Trees Pattern Optimization Wrapping up

My Context (VERUM)

Explore Your Future in Mathematics!

The Valpration Experience in Research by Undergraduate Mathematiciana (VEEUM) program nodes exceptioned ning suphameter and patient students holding for a reasonable appression in mathematical assistance. We they perfect opportunity to determine whether graduate studios in the mathematical sciences should be part of your future plans. First generation collego students, misority students, and screme are granicalarly encurrenged to apple.

Each participant will be provided with residence hall accommodations on campus, \$4,030 stipend, travel reimbursement to Valparaiso University for the summer, and partial travel reimbursement to the Joint Mathematics Meeting in January 2013.

Most projects are in combinatorics and mathematical biology, with additional projects selected from other areas of mathematics, statistics, and computer science. A complete list of current and past projects can be found on the program website.

Program Dates: May 30 - July 31, 2012

Program Highlights

- Learn from expert mathematicians.
- · Participate in two undergraduate research conferences.
- · Participate in the Joint Mathematics Meeting.
- Travel to area graduate schools.
- · Take fun trips to Chicago and the Indiana Dunes Lakeshore.

Application Deadline: February 27, 2012

Applicant Requirement

- Must be a citizen or permanent resident of the United States or its possessions.
- Must be a full-time undergraduate student in 2012-2013.
- Must have completed linear algebra, or another proof-based course.

valpo.edu/mcs/verum

・ロト ・ 四ト ・ ヨト ・ ヨト

э

Lara Pudwell

Engaging students in combinatorics research

Resources for student project ideas

• Attend talks, read papers and books

イロト イヨト イヨト イヨト

э

Resources for student project ideas

• Attend talks, read papers and books

• Change a variable in an existing problem

• • = • • = •

Characteristics of good projects for students

- Limited background required
- Specific and concrete
- Multiple layers, simple to more difficult
- Of interest
- Accessible examples (by hand and/or computation)
- You have some idea how to solve it

Characteristics taken from

Three combinatorial stories

- Patterns in words (VERUM 2014, 2015, 2018)
- Patterns in trees (VERUM 2010, 2011, 2012)
- Patterns to the extreme (MathPath 2022)

4 B 6 4 B

Permutations Doubling And More

Permutations

Definition

A permutation is a list where order matters. S_n is the set of all permutations of $\{1, 2, ..., n\}$.

Examples:

- $S_1 = \{1\}$
- $S_2 = \{12, 21\}$
- $\mathcal{S}_3 = \{123, 132, 213, 231, 312, 321\}$

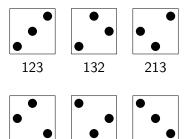
$$|\mathcal{S}_n| = n!$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Permutations Doubling And More

Plots

Visualize $\pi = \pi_1 \pi_2 \cdots \pi_n \in S_n$ by plotting the points (i, π_i) in the *xy*-plane.



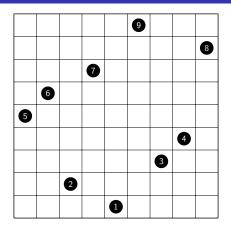
231 312 321

Lara Pudwell Engaging students in combinatorics research

э

Permutations Doubling And More

Plots

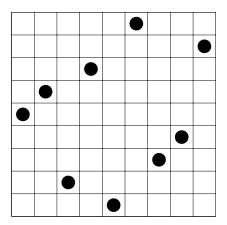


 $\pi = 562719348 \qquad \texttt{(i)} \quad \texttt{($

Lara Pudwell Engaging students in combinatorics research

Permutations Doubling And More

Patterns



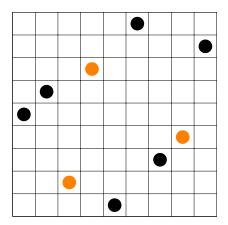
Lara Pudwell Engaging students in combinatorics research

ヘロト ヘロト ヘビト ヘビト

2

Permutations Doubling And More

Patterns



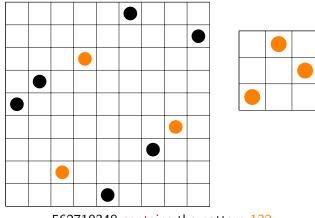
Lara Pudwell Engaging students in combinatorics research

ヘロト ヘロト ヘビト ヘビト

2

Permutations Doubling And More

Patterns

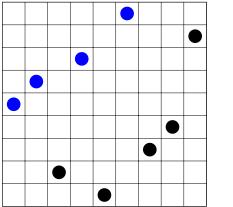


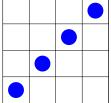
562719348 contains the pattern 132

・ロト ・回ト ・ヨト ・ヨト

Permutations Doubling And More

Patterns





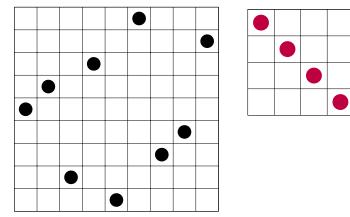
・ロト ・回ト ・ヨト ・ヨト

æ

562719348 contains the pattern 1234

Permutations Doubling And More

Patterns



562719348 avoids the pattern 4321

・ロト ・回 ト ・ ヨト ・ ヨト …

2

Permutations Doubling And More

Enumeration

Big question

How many permutations of length *n* contain the pattern ρ ?

Or, alternatively...

Big question

How many permutations of length n avoid the pattern ρ ?

(depends on what ρ is!)

Notation

 $S_n(\rho)$ is the set of permutations of length *n* avoiding ρ . $s_n(\rho) = |S_n(\rho)|.$

Warm Up

Question How many permutations of length *n* avoid the pattern **•**?

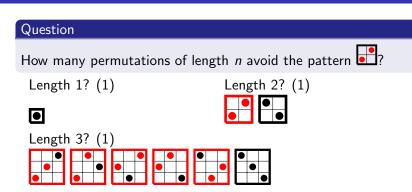
Length 1? (1)

イロト イポト イヨト イヨト

э

Permutations

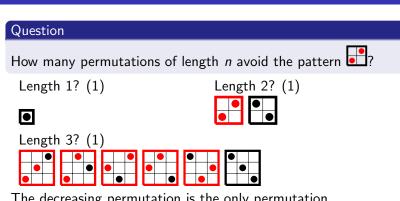
Warm Up



э

< ロ > < 同 > < 三 > < 三 > <

Warm Up



Permutations

The decreasing permutation is the only permutation of length n that avoids 12. Similar: the increasing permutation is the only permutation of length n that avoids 21.

Words Trees Wrapping up

Permutations

Symmetry

Common symmetries

Given
$$\rho = \rho_1 \cdots \rho_n \in S_n$$
,
• $\rho^r = \rho_n \cdots \rho_1$ (reverse)
• $\rho^c = (n+1-\rho_1)(n+1-\rho_2)\cdots(n+1-\rho_n)$ (complement)

• ρ^{-1} is graphed by plotting (ρ_i, i) for $1 \le i \le n$ (inverse)

3

イロト イボト イヨト イヨト

Fact: For any ρ , $s_n(\rho) = s_n(\rho^r) = s_n(\rho^c) = s_n(\rho^{-1})$.

Introduction Words Wrapping up

Permutations

Symmetry

Common symmetries

Given
$$\rho = \rho_1 \cdots \rho_n \in S_n$$
,
• $\rho^r = \rho_n \cdots \rho_1$ (reverse)
• $\rho^c = (n+1-\rho_1)(n+1-\rho_2)\cdots(n+1-\rho_n)$ (complement)

• ρ^{-1} is graphed by plotting (ρ_i, i) for $1 \le i \le n$ (inverse)

Fact: For any
$$\rho$$
, $\mathbf{s}_n(\rho) = \mathbf{s}_n(\rho^r) = \mathbf{s}_n(\rho^c) = \mathbf{s}_n(\rho^{-1})$.
So... $\mathbf{s}_n(12) = \mathbf{s}_n(21)$
 $\mathbf{s}_n(123) = \mathbf{s}_n(321)$; $\mathbf{s}_n(132) = \mathbf{s}_n(231) = \mathbf{s}_n(213) = \mathbf{s}_n(312)$

Permutations Doubling And More

Results

How many permutations of length n avoid the pattern...

- 12? (1)
- 123? (Catalan)
- 132? (Catalan)

< ロ > < 同 > < 三 > < 三 >

э

Results

How many permutations of length *n* avoid the pattern...

- 12? (1)
- 123? (Catalan)
- 132? (Catalan)
- 1234? 1, 1, 2, 6, 23, 103, 513, 2761, ... (Gessel, 1990)
- 1342? 1, 1, 2, 6, 23, 103, 512, 2740, ... (Bóna, 1997)
- 1324? 1, 1, 2, 6, 23, 103, 513, 2762, ... (open question!)

< ロ > < 同 > < 回 > < 回 > .

Permutations

Permutations Doubling And More

Symmetric Words

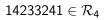
Generalizations of Permutations

$$\mathcal{D}_n = \{ \pi \pi | \pi \in \mathcal{S}_n \} \\ \mathcal{R}_n = \{ \pi \pi^r | \pi \in \mathcal{S}_n \}$$

.

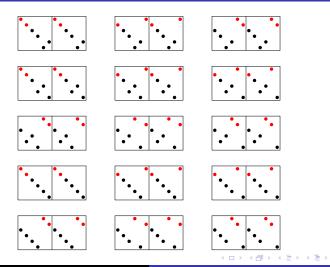
.

 $14231423\in \mathcal{D}_4$



Engaging students in combinatorics research

Permutations Doubling And More



Lara Pudwell Engaging students in combinatorics research

Permutations Doubling And More

Proof Sketch

Let $\pi \pi \in \mathcal{D}_n(1342)$. Erase *n* and *n* - 1 to obtain $\pi' \pi' \in \mathcal{D}_{n-2}(1342)$.

Observations:

• π' has at most one 12 pattern.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Permutations Doubling And More

Proof Sketch

Let $\pi \pi \in \mathcal{D}_n(1342)$. Erase *n* and *n* - 1 to obtain $\pi' \pi' \in \mathcal{D}_{n-2}(1342)$.

Observations:

- π' has at most one 12 pattern.
- If π' has a 12 pattern, it uses consecutive digits in adjacent positions.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Permutations Doubling And More

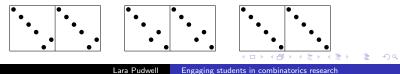
Proof Sketch

Let $\pi \pi \in \mathcal{D}_n(1342)$. Erase *n* and *n*-1 to obtain $\pi' \pi' \in \mathcal{D}_{n-2}(1342)$.

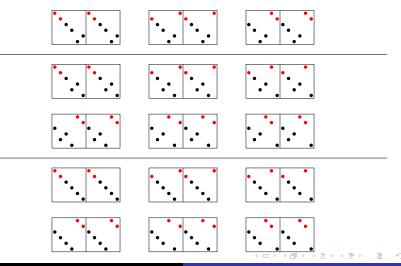
Observations:

- π' has at most one 12 pattern.
- If π' has a 12 pattern, it uses consecutive digits in adjacent positions.
- If π' has a 12 pattern it uses the digits 12 or 23.

3 possible choices for $\pi'\pi'$:



Permutations Doubling And More



Lara Pudwell Engagin

Engaging students in combinatorics research

Permutations Doubling And More

Pattern avoidance in \mathcal{D}_n

$d_n(\rho)$	
15	$(n \ge 5)$
13	$(n \geq 5)$
2n+2	$(n \ge 6)$
3n + 6	$(n \ge 7)$
$\frac{1}{2}n + \frac{1}{2}n - 4$	$(n \ge 0)$
$\frac{1}{n^2}$ $\frac{5}{n}$ 8	$(n \ge 6)$
$\frac{1}{2}n + \frac{1}{2}n = 0$	$(n \geq 0)$
L_{n+2}	$(n \ge 5)$
$\mathrm{d}_{n-1}(\rho) + \mathrm{d}_{n-2}(\rho) + \mathrm{d}_{n-3}(\rho)$	$(n \ge 10)$
$2^n - n$	(<i>n</i> ≥ 4)
	$3n + 6$ $\frac{1}{2}n^{2} + \frac{3}{2}n - 4$ $\frac{1}{2}n^{2} + \frac{5}{2}n - 8$ L_{n+2} $d_{n-1}(\rho) + d_{n-2}(\rho) + d_{n-3}(\rho)$

Lara Pudwell Engaging students in combinatorics research

Permutations Doubling And More

Pattern avoidance in \mathcal{R}_n

Pattern ρ	$r_n(\rho)$	
1234	0	$(n \ge 7)$
1243	$\frac{n^3}{3} - \frac{7n}{3} + 4$	$(n \ge 3)$
1324	$2\mathbf{r}_{n-1}(\rho) + 4$	$(n \ge 4)$
2143	$2^{n-1}(p) + 4$	(″ ≤ 4)
1423	$2r_{n-1}(\rho) + r_{n-3}(\rho) + 2$	$(n \ge 5)$
1432	$2\mathbf{r}_{n-1}(\rho) + \mathbf{r}_{n-2}(\rho)$	$(n \ge 5)$
1342	$2r_{n-1}(\rho) + r_{n-2}(\rho) + 2$	(<i>n</i> ≥ 4)
2413	$2\mathbf{r}_{n-1}(\rho) + 2\mathbf{r}_{n-2}(\rho)$	(<i>n</i> ≥ 3)

Permutations Doubling And More

Optimization

Question

What is the max number of copies of ρ in a member of \mathcal{D}_n ? \mathcal{R}_n ?

イロト イヨト イヨト イヨト

Permutations Doubling And More

Optimization

Question

What is the max number of copies of ρ in a member of \mathcal{D}_n ? \mathcal{R}_n ?

Maximizing copies of 2143

< ロ > < 同 > < 三 > < 三 >

э

Permutations Doubling And More

Optimization

Question

What is the max number of copies of ρ in a member of \mathcal{D}_n ? \mathcal{R}_n ?

Maximizing copies of 2143

< ロ > < 同 > < 三 > < 三 >

- In \mathcal{D}_n appears to be correlated to copies in \mathcal{S}_n .
- In \mathcal{R}_n appears to be sparser than copies in \mathcal{S}_n ; more open cases.
 - Known: 1234, 1243, 1342, 1432, 2143
 - Open: 1423, 1324, 2413

Permutations Doubling And More

Other generalizations?

- Avoiding longer patterns
- Avoiding multiple patterns simultaneously
- Pattern avoidance in $\{\pi\pi^c | \pi \in \mathcal{S}_n\}$
- Pattern avoidance in $\left\{\pi\pi^{-1} \middle| \pi \in \mathcal{S}_n \right\}$
- Packing as many copies of a pattern as possible into other structured words.

・ 同 ト ・ ヨ ト ・ ヨ ト

Permutations Doubling And More

Characteristics of good projects for students

- ullet Limited background required \checkmark
- Specific and concrete \checkmark
- Multiple layers, simple to more difficult \checkmark
- Of interest ✓
- ullet Accessible examples (by hand and/or computation) \checkmark
- You have some idea how to solve it \checkmark

Contiguous Noncontiguous Containment And More

Patterns in Trees

Our trees are:

- rooted (root vertex at top, children below)
- ordered (left child and right child are distinct)
- full binary (each vertex has exactly 0 or 2 children)

 \mathbb{T}_n is the set of *n*-leaf binary trees.

Question: How many trees in \mathbb{T}_n avoid a given tree pattern?

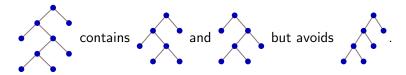
Contiguous Noncontiguous Containment And More

Tree patterns

Contiguous tree pattern

Tree T contains tree t if and only if t is a contiguous rooted ordered subtree of T.

Example:



(日)

Contiguous Noncontiguous Containment And More

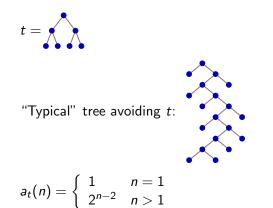
What is the number $a_t(n)$ of *n*-leaf binary trees avoiding *t*?

 $t = \bullet$ $a_t(n) = 0$ $t = \bigwedge$ $a_t(n) = \begin{cases} 1 & n=1 \\ 0 & n>1 \end{cases}$ $t = \mathbf{A}$ $a_t(n) = 1$

• • = • • = •

Contiguous Noncontiguous Containment And More

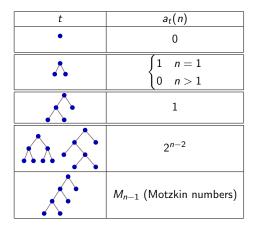
What is the number $a_t(n)$ of *n*-leaf binary trees avoiding *t*?



• • = • • = •

Contiguous Noncontiguous Containment And More

Contiguous pattern enumeration data



イロト イボト イヨト イヨト

э

Contiguous Noncontiguous Containment And More

Contiguous tree pattern results

- Rowland: contiguous pattern avoidance in binary trees
- Gabriel, Peske, P., Tay: extended Rowland's results to ternary trees

Contiguous Noncontiguous Containment And More

Contiguous tree pattern results

- Rowland: contiguous pattern avoidance in binary trees
 - Algorithm to determine $\sum_{n\geq 1} a_t(n)x^n$ for any binary tree pattern.
 - $\sum_{n\geq 1} a_t(n) x^n$ is always algebraic.
- Gabriel, Peske, P., Tay: extended Rowland's results to ternary trees
 - Counting results from avoiding ternary tree patterns include Catalan numbers, little Schröder numbers, and other known combinatorial sequences.

イロト イポト イラト イラト

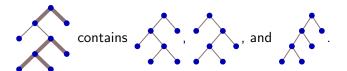
Contiguous Noncontiguous Containment And More

Tree patterns

Noncontiguous tree pattern

Tree T contains tree t if and only if there exists a sequence of edge contractions of T (by pairs) that produces t.

Example:



< ロ > < 同 > < 三 > < 三 >

Contiguous Noncontiguous Containment And More

Noncontiguous pattern enumeration data

Pattern t	Number of n -leaf trees avoiding t
•	0
•	$egin{cases} 1 & n=1 \ 0 & n>1 \end{cases}$
$\frown \land \bullet$	1
	2 ⁿ⁻²

イロト イボト イヨト イヨト

э

Contiguous Noncontiguous Containment And More

The Main Theorem

Notation

Let av_t(n) be the number trees in T_n that avoid t noncontiguously.

• Let
$$g_t(x) = \sum_{n=1}^{\infty} \operatorname{av}_t(n) x^n$$
.

Theorem (Dairyko, P., Tyner, & Wynn, 2011)

Fix $k \in \mathbb{Z}^+$. Let $t, s \in \mathbb{T}_k$. Then $g_t(x) = g_s(x)$.

イロト イポト イヨト イヨト

э

Contiguous Noncontiguous Containment And More

Generating functions

k	$g_t(x), t \in \mathbb{T}_k$	OEIS number		
1	0	trivial		
2	X	trivial		
3	$\frac{x}{1-x}$	trivial		
4	$\frac{x-x^2}{1-2x}$	A000079		
5	$\frac{x-2x^2}{1-3x+x^2}$	A001519		
6	$\frac{x-3x^2+x^3}{1-4x+3x^2}$	A007051		
7	$\frac{x - 4x^2 + 3x^3}{1 - 5x + 6x^2 - x^3}$	A080937		
8	$\frac{x-5x^2+6x^3-x^4}{1-6x+10x^2-4x^3}$	A024175		

イロト イヨト イヨト イヨト

æ

Contiguous Noncontiguous Containment And More

Coefficient sightings...

 $\frac{x}{1}$ $\frac{x}{1-x}$ $\frac{x-x^2}{1-2x}$ $\tfrac{x-2x^2}{1-3x+x^2}$ $\frac{x-3x^2+x^3}{1-4x+3x^2}$ $\frac{x - 4x^2 + 3x^3}{1 - 5x + 6x^2 - x^3}$ $\frac{x-5x^2+6x^3-x^4}{1-6x+10x^2-4x^3}$

э

Lara Pudwell Engaging students in combinatorics research

Contiguous Noncontiguous Containment And More

Coefficient sightings...

								$\frac{x}{1}$
-								$\frac{x}{1-x}$
1								
1	1							$\frac{x-x^2}{1-2x}$
1	2	1						1-2x
1	3	3	1					$\frac{x-2x^2}{1-3x+x^2}$
1	4	6	4	1				$1 - 3x + x^2$
1	5	10	10	5	1			$x - 3x^2 + x^3$
1	6	15	20	15	6	1		$\frac{x-3x^2+x^3}{1-4x+3x^2}$
1	7	21	35	35	21	7	1	$\frac{x - 4x^2 + 3x^3}{1 - 5x + 6x^2 - x^3}$

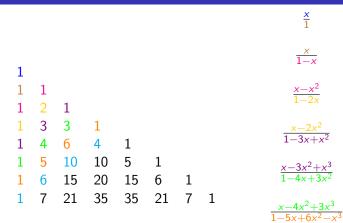
Lara Pudwell Engaging students in combinatorics research

 $\frac{x-5x^2+6x^3-x^4}{1-6x+10x^2-4x^3}$

э

Contiguous Noncontiguous Containment And More

Coefficient sightings...



 $\frac{x-5x^2+6x^3-x^4}{1-6x+10x^2-4x_{\pm}^3} \rightarrow \text{ (b) } x = 0$

Contiguous Noncontiguous Containment And More

An explicit formula

Theorem (Dairyko, P., Tyner, & Wynn, 2011)

Let $k \in \mathbb{Z}^+$ and let $t \in \mathbb{T}_k$. Then

$$g_t(x) = \frac{\sum_{i=0}^{\lfloor \frac{k-2}{2} \rfloor} (-1)^i \cdot \binom{k-(i+2)}{i} \cdot x^{i+1}}{\sum_{i=0}^{\lfloor \frac{k-1}{2} \rfloor} (-1)^i \cdot \binom{k-(i+1)}{i} \cdot x^i}$$

Lara Pudwell Engaging students in combinatorics research

< ロ > < 同 > < 三 > < 三 > 、

Contiguous Noncontiguous Containment And More

Noncontiguous tree pattern results

- Dairyko, P., Tyner, Wynn: **noncontiguous** pattern avoidance in binary trees
- P., Serrato, Scholten, Schrock: noncontiguous pattern **containment** in *m*-ary trees

4日 > 4 回 > 4 回 > 4

Contiguous Noncontiguous **Containment** And More

Contiguous Containment

Theorem (Flajolet & Steyaert, 1983)

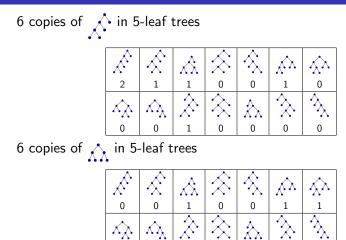
The number of copies of a *k*-leaf tree in the set of all *n*-leaf trees is independent of the tree pattern and is $\binom{2n-k}{n-k}$.

Example: Any 4-leaf tree is contained in the set of 5-leaf trees $\binom{2\cdot 5-4}{5-4} = \binom{6}{1} = 6$ times.

< ロ > < 同 > < 三 > < 三 >

Contiguous Noncontiguous Containment And More

Contiguous Containment Example



Λ

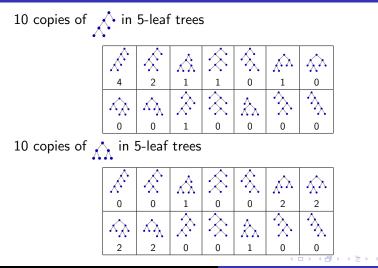
Λ

0

1

Contiguous Noncontiguous Containment And More

Noncontiguous Containment Example



Lara Pudwell Engaging students in combinatorics research

Contiguous Noncontiguous **Containment** And More

Noncontiguous Containment

Theorem (P., Scholten, Schrock, Serrato, 2012)

If $\operatorname{occ}_k(n)$ is the number of noncontiguous occurrences of $t \in \mathbb{T}_k$ in \mathbb{T}_n , then $\operatorname{occ}_k(n)$ is independent of t and

$$\sum_{n\geq 1}\sum_{k\geq 1}\operatorname{occ}_{k}(n)x^{n}y^{k} = \frac{\sqrt{1-4x}(1-\sqrt{1-4x})y}{(y+2)\sqrt{1-4x}-y}$$

Expansion: $\frac{\sqrt{1-4x}(1-\sqrt{1-4x})y}{(y+2)\sqrt{1-4x}-y} = xy + x^{2}(y+y^{2}) + x^{3}(2y+4y^{2}+y^{3}) + x^{4}(5y+15y^{2}+7y^{3}+y^{4}) + x^{5}(14y+56y^{2}+37y^{3}+\mathbf{10}y^{4}+y^{5}) + \cdots$

Contiguous Noncontiguous Containment And More

- Rowland: How many *binary* trees *avoid* a given *contiguous* tree pattern?
- Variation 1: How many *ternary* trees *avoid* a given *contiguous* tree pattern?
- Variation 2: How many *binary* trees *avoid* a given *noncontiguous* tree pattern?
- Variation 3: How many *m-ary* trees *contain* a given *noncontiguous* tree pattern?

< ロ > < 同 > < 三 > < 三 >

Contiguous Noncontiguous Containment And More

Other generalizations?

- non-ordered trees
- non-rooted trees
- non-full trees
- semi-contiguous tree patterns (some parts must be contiguous; other parts not)

< ロ > < 同 > < 三 > < 三 >

Contiguous Noncontiguous Containment And More

Characteristics of good projects for students

- Limited background required \checkmark
- Specific and concrete \checkmark
- Multiple layers, simple to more difficult \checkmark
- Of interest ✓
- ullet Accessible examples (by hand and/or computation) \checkmark
- You have some idea how to solve it \checkmark

・ 同 ト ・ ヨ ト ・ ヨ ト

A classic theorem ...taught by playing a game ...that generated interesting behav

MathPath



mathpath.org

Lara Pudwell Engaging students in combinatorics research

イロト イボト イヨト イヨト

A classic theorem ...taught by playing a game ...that generated interesting behavior

Student work

ISOPERIMETRIC SETS OF ENGLISH WORDS

GB,TC,MC,MD,BF,WG,XH,SK,TL,PM,NM,AN,EP,ZT,AU,EZ

ABSTRACT. We consider a space of English words, define distance and boundary, and find subsets of small volumes of minimum or maximum perimeter.

1. INTRODUCTION

The isoperimetric problem is among the oldest in mathematics. It asks for the least-perimeter way to enclose a given volume. In this paper, we consider a space of English words and seek subsets of small volumes of minimum or maximum perimeter.

While there has been much study of numerical properties of the English language [4] and of the isoperimetric problem on discrete spaces (see e.g. [2] and [1]), as far as we know, our specific focus is new.

We use a standard list of the 3000 most common English words [3], with a notion of distance and perimeter (Sect. 2). We begin with the study of singletons (word sets with volume 1)

A classic theorem ...taught by playing a game ...that generated interesting behavio

Classic result

Theorem (Erdős-Szekeres, 1935)

Any permutation of length (a - 1)(b - 1) + 1 or more contains either an increasing pattern of length *a* or a decreasing pattern of length *b*.

・ 同 ト ・ ヨ ト ・ ヨ ト

A classic theorem ...taught by playing a game ...that generated interesting behavio

Classic result

Theorem (Erdős-Szekeres, 1935)

Any permutation of length (a - 1)(b - 1) + 1 or more contains either an increasing pattern of length *a* or a decreasing pattern of length *b*.

Examples: a = 3, b = 4

- 321654 avoids 123 and 4321.
- 563412 avoids 123 and 4321.
- 3216547 contains 367.
- 1726354 contains 123 and 7654.

• • = • • = •

A classic theorem ...taught by playing a game ...that generated interesting behavior

The (a, b)-permutation game

- Take turns naming different positive numbers.
- The game is over when a player completes an increasing sequence of length *a* or a decreasing sequence of length *b*.

Example for the (3,3)-permutation game:

Player 1 picks 5 Player 2 picks 1 Player 1 picks 4 Player 2 picks 2 The game is over because 5,4,2 is a decreasing sequence of length 3.

Question: How long can you make the game last?

A classic theorem ...taught by playing a game ...that generated interesting behavio

The (a, b)-permutation game

- The longest (3,3)-game is ____ moves.
- The longest (3, 4)-game is _____ moves.
- The longest (3,5)-game is ____ moves.
- The longest (4, 4)-game is _____ moves.
- The longest (4,5)-game is _____ moves.

A classic theorem ...taught by playing a game ...that generated interesting behavior

The (a, b)-permutation game

- The longest (3,3)-game is <u>5</u> moves.
- The longest (3,4)-game is <u>7</u> moves.
- The longest (3,5)-game is <u>9</u> moves.
- The longest (4, 4)-game is <u>10</u> moves.
- The longest (4,5)-game is <u>13</u> moves.

Fact: The longest (a, b)-game is (a - 1)(b - 1) + 1 moves.

イロト イポト イラト イラト

A detour

One strategy:

A classic theorem ...taught by playing a game ...that generated interesting behavior

æ

A classic theorem ...taught by playing a game ...that generated interesting behavior

A detour

One strategy:

- (avoiding 123 and 4321): 321654
- (avoiding 1234 and 4321): 321654987

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

A classic theorem ...taught by playing a game ...that generated interesting behavior

A detour

One strategy:

- (avoiding 123 and 4321): 321654
- (avoiding 1234 and 4321): 321654987

Question

How many different permutations of length (a-1)(b-1)+1 result from playing the (a, b)-permutation game optimally?

< ロ > < 同 > < 三 > < 三 >

A classic theorem ...taught by playing a game ...that generated interesting behavior

Student-inspired observation

Question

How many different permutations of length (a - 1)(b - 1) + 1 result from playing the (a, b)-permutation game optimally?

< ロ > < 同 > < 回 > < 回 > .

A classic theorem ...taught by playing a game ...that generated interesting behavior

Student-inspired observation

Question

How many different permutations of length (a - 1)(b - 1) + 1 result from playing the (a, b)-permutation game optimally?

Proposition

There are $(C_{a-1})^2$ permutations of length 2(a-1) that avoid both $12 \cdots a$ and 321.

Why?

A classic theorem ...taught by playing a game ...that generated interesting behavior

Student-inspired observation

Question

How many different permutations of length (a - 1)(b - 1) + 1 result from playing the (a, b)-permutation game optimally?

Proposition

There are $(C_{a-1})^2$ permutations of length 2(a-1) that avoid both $12 \cdots a$ and 321.

Why?

• Robinson-Schensted-Knuth correspondence

A classic theorem ...taught by playing a game ...that generated interesting behavior

Student-inspired observation

Question

How many different permutations of length (a - 1)(b - 1) + 1 result from playing the (a, b)-permutation game optimally?

Proposition

There are $(C_{a-1})^2$ permutations of length 2(a-1) that avoid both $12 \cdots a$ and 321.

Why?

- Robinson-Schensted-Knuth correspondence
- bijection with pairs of parentheses arrangements

Bijection

A classic theorem ...taught by playing a game ...that generated interesting behavior

permutation	left-to-right maxima	positions	parentheses pairs
2143	{2,4}	{1,3}	()(), ()()
2413	{2,4}	{1,2}	()(), (())
3412	{3,4}	{1,2}	(()), (())
3142	{3,4}	{1,3}	(()), ()()

æ

Lessons Learned

• Change a parameter or definition.

Lara Pudwell Engaging students in combinatorics research

・ 戸 ・ ・ ヨ ・ ・ ヨ ・

æ

Lessons Learned

- Change a parameter or definition.
- Be willing to learn new topics.

伺 ト イヨト イヨト

э

Lessons Learned

- Change a parameter or definition.
- Be willing to learn new topics.
- Be open to student-inspired lines of questions.

• • = • • = •

For more details (on permutations, words, and trees)...

Words & Permutations:

- M. Anderson, M. Diepenbroek, L. Pudwell, and A. Stoll, Pattern avoidance in reverse double lists, Discrete Math. Theor. Comput. Sci. 19.2 (2018), #13.
- Miklos Bóna, Combinatorics of Permutations, Chapman & Hall, 2004.
- C. Cratty, S. Erickson, F. Negassi, and L. Pudwell, Pattern avoidance in double lists, *Involve* 10.3 (2017), 379–398.
- J. Krull, L. Pudwell, E. Redmon, and A. Reimer-Berg, Packing patterns in symmetric words, Australas. J. Combin. 84.2 (2022), 238–257.
- L. Pudwell Catalan Numbers and Permutations, to appear in Mathematics Magazine.

Trees:

- M. Dairyko, L. Pudwell, S. Tyner, and C. Wynn, Non-contiguous pattern avoidance in binary trees, Electron. J. Combin. 19 (3) (2012), P22.
- P. Flajolet and J. M. Steyaert, Patterns and pattern-matching in trees: an analysis. Info. Control 58 (1983), 19–58.
- N. Gabriel, K. Peske, L. Pudwell, and S. Tay, Pattern avoidance in ternary trees, J. Integer Seq. 15 (2012), 12.1.5.
- L. Pudwell, C. Scholten, T. Schrock, and A. Serrato, Non-contiguous pattern containment in binary trees, ISRN Combinatorics vol. 2014, Article ID 316535, 8 pages, 2014.
- E. S. Rowland, Pattern avoidance in binary trees, J. Combin. Theory, Ser. A 117 (2010), 741–758.

< ロ > < 同 > < 三 > < 三 > 、

For more details (on undergraduate research)...

- Foundations for Undergraduate Research in Mathematics series, edited by Aaron Wootton (Springer)
- A Mathematician's Practical Guide to Mentoring Undergraduate Research by Michael Dorff, Allison Henrich, and Lara Pudwell (MAA Press 2019) (Choosing problems, group dynamics, communication, funding, assessment, and more!)
- Australasian Council for Undergraduate Research https://www.acur.org.au/
- slides at faculty.valpo.edu/lpudwell

・ 同 ト ・ ヨ ト ・ ヨ ト

For more details (on undergraduate research)...

- Foundations for Undergraduate Research in Mathematics series, edited by Aaron Wootton (Springer)
- A Mathematician's Practical Guide to Mentoring Undergraduate Research by Michael Dorff, Allison Henrich, and Lara Pudwell (MAA Press 2019) (Choosing problems, group dynamics, communication, funding, assessment, and more!)
- Australasian Council for Undergraduate Research https://www.acur.org.au/
- slides at faculty.valpo.edu/lpudwell

Thanks for listening!

・ 同 ト ・ ヨ ト ・ ヨ ト