Daniel Horsley (Monash University) Padraig Ó Catháin (Dublin City University)

(n, k, t)-Steiner system

A collection of *k*-subsets (*blocks*) of a set of *n* vertices such that any *t* vertices occur together in exactly one block.

(We always assume $n > k > t \ge 2$.)

(n, k, t)-Steiner system

A collection of *k*-subsets (*blocks*) of a set of *n* vertices such that any *t* vertices occur together in exactly one block.

It's a *partial* (n, k, t)-Steiner system if any t vertices occur together in at most one block.

(We always assume $n > k > t \ge 2$.)

(n, k, t)-Steiner system

A collection of *k*-subsets (*blocks*) of a set of *n* vertices such that any *t* vertices occur together in exactly one block.

It's a *partial* (*n*, *k*, *t*)-Steiner system if any *t* vertices occur together in at most one block.

(We always assume $n > k > t \ge 2$.)

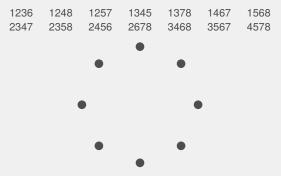
1236	1248	1257	1345	1378	1467	1568
2347	2358	2456	2678	3468	3567	4578

(n, k, t)-Steiner system

A collection of *k*-subsets (*blocks*) of a set of *n* vertices such that any *t* vertices occur together in exactly one block.

It's a *partial* (n, k, t)-Steiner system if any t vertices occur together in at most one block.

(We always assume $n > k > t \ge 2$.)



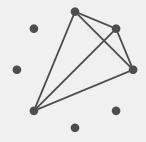
(n, k, t)-Steiner system

A collection of *k*-subsets (*blocks*) of a set of *n* vertices such that any *t* vertices occur together in exactly one block.

It's a *partial* (*n*, *k*, *t*)-Steiner system if any *t* vertices occur together in at most one block.

(We always assume $n > k > t \ge 2$.)

1236	1248	1257	1345	1378	1467	1568
2347	2358	2456	2678	3468	3567	4578



(n, k, t)-Steiner system

A collection of *k*-subsets (*blocks*) of a set of *n* vertices such that any *t* vertices occur together in exactly one block.

It's a *partial* (*n*, *k*, *t*)-Steiner system if any *t* vertices occur together in at most one block.

(We always assume $n > k > t \ge 2$.)

1236	1248	1257	1345	1378	1467	1568
2347	2358	2456	2678	3468	3567	4578

(n, k, t)-Steiner system

A collection of *k*-subsets (*blocks*) of a set of *n* vertices such that any *t* vertices occur together in exactly one block.

It's a *partial* (*n*, *k*, *t*)-Steiner system if any *t* vertices occur together in at most one block.

(We always assume $n > k > t \ge 2$.)

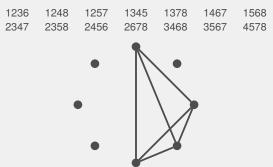
1236	1248	1257	1345	1378	1467	1568
2347	2358	2456	2678	3468	3567	4578

(n, k, t)-Steiner system

A collection of *k*-subsets (*blocks*) of a set of *n* vertices such that any *t* vertices occur together in exactly one block.

It's a *partial* (n, k, t)-Steiner system if any t vertices occur together in at most one block.

(We always assume $n > k > t \ge 2$.)



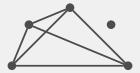
(n, k, t)-Steiner system

A collection of *k*-subsets (*blocks*) of a set of *n* vertices such that any *t* vertices occur together in exactly one block.

It's a *partial* (*n*, *k*, *t*)-Steiner system if any *t* vertices occur together in at most one block.

(We always assume $n > k > t \ge 2$.)

1236	1248	1257	1345	1378	1467	1568
2347	2358	2456	2678	3468	3567	4578



(n, k, t)-Steiner system

A collection of *k*-subsets (*blocks*) of a set of *n* vertices such that any *t* vertices occur together in exactly one block.

It's a *partial* (*n*, *k*, *t*)-Steiner system if any *t* vertices occur together in at most one block.

(We always assume $n > k > t \ge 2$.)

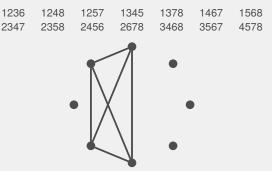
1236	1248	1257	1345	1378	1467	1568
2347	2358	2456	2678	3468	3567	4578

(n, k, t)-Steiner system

A collection of *k*-subsets (*blocks*) of a set of *n* vertices such that any *t* vertices occur together in exactly one block.

It's a *partial* (n, k, t)-Steiner system if any t vertices occur together in at most one block.

(We always assume $n > k > t \ge 2$.)

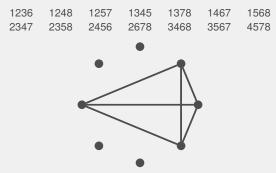


(n, k, t)-Steiner system

A collection of *k*-subsets (*blocks*) of a set of *n* vertices such that any *t* vertices occur together in exactly one block.

It's a *partial* (n, k, t)-Steiner system if any t vertices occur together in at most one block.

(We always assume $n > k > t \ge 2$.)



(n, k, t)-Steiner system

A collection of *k*-subsets (*blocks*) of a set of *n* vertices such that any *t* vertices occur together in exactly one block.

It's a *partial* (*n*, *k*, *t*)-Steiner system if any *t* vertices occur together in at most one block.

(We always assume $n > k > t \ge 2$.)

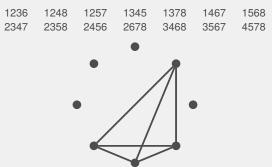
1236	1248	1257	1345	1378	1467	1568
2347	2358	2456	2678	3468	3567	4578

(n, k, t)-Steiner system

A collection of *k*-subsets (*blocks*) of a set of *n* vertices such that any *t* vertices occur together in exactly one block.

It's a *partial* (n, k, t)-Steiner system if any t vertices occur together in at most one block.

(We always assume $n > k > t \ge 2$.)



(n, k, t)-Steiner system

A collection of *k*-subsets (*blocks*) of a set of *n* vertices such that any *t* vertices occur together in exactly one block.

It's a *partial* (*n*, *k*, *t*)-Steiner system if any *t* vertices occur together in at most one block.

(We always assume $n > k > t \ge 2$.)

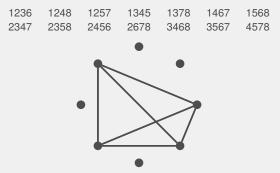
1236	1248	1257	1345	1378	1467	1568
2347	2358	2456	2678	3468	3567	4578

(n, k, t)-Steiner system

A collection of *k*-subsets (*blocks*) of a set of *n* vertices such that any *t* vertices occur together in exactly one block.

It's a *partial* (n, k, t)-Steiner system if any t vertices occur together in at most one block.

(We always assume $n > k > t \ge 2$.)

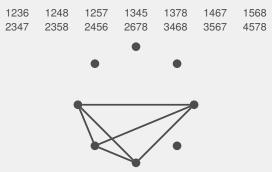


(n, k, t)-Steiner system

A collection of *k*-subsets (*blocks*) of a set of *n* vertices such that any *t* vertices occur together in exactly one block.

It's a *partial* (n, k, t)-Steiner system if any t vertices occur together in at most one block.

(We always assume $n > k > t \ge 2$.)

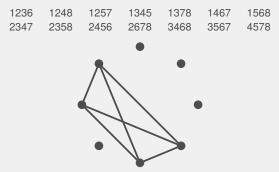


(n, k, t)-Steiner system

A collection of *k*-subsets (*blocks*) of a set of *n* vertices such that any *t* vertices occur together in exactly one block.

It's a *partial* (n, k, t)-Steiner system if any t vertices occur together in at most one block.

(We always assume $n > k > t \ge 2$.)

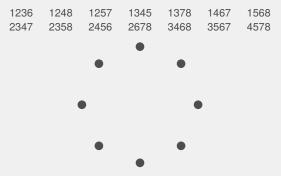


(n, k, t)-Steiner system

A collection of *k*-subsets (*blocks*) of a set of *n* vertices such that any *t* vertices occur together in exactly one block.

It's a *partial* (n, k, t)-Steiner system if any t vertices occur together in at most one block.

(We always assume $n > k > t \ge 2$.)



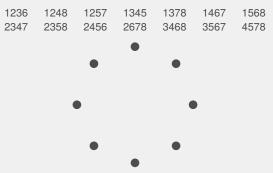
(n, k, t)-Steiner system

A collection of *k*-subsets (*blocks*) of a set of *n* vertices such that any *t* vertices occur together in exactly one block.

It's a *partial* (*n*, *k*, *t*)-Steiner system if any *t* vertices occur together in at most one block.

(We always assume $n > k > t \ge 2$.)

Example: an (8, 4, 3)-Steiner system



(n, t + 1, t)-Steiner systems are of particular interest. (n, 3, 2): Steiner triple systems (n, 4, 3): Steiner quadruple systems.

ℓ-good sequencing of a partial Steiner system

An ordering of the vertices such that no block is contained in a set of ℓ consecutive vertices.

ℓ-good sequencing of a partial Steiner system

An ordering of the vertices such that no block is contained in a set of ℓ consecutive vertices.

So precisely if the following does not occur:

l-good sequencing of a partial Steiner system

An ordering of the vertices such that no block is contained in a set of ℓ consecutive vertices.

So precisely if the following does not occur:

l-good sequencing of a partial Steiner system

An ordering of the vertices such that no block is contained in a set of ℓ consecutive vertices.

So precisely if the following does not occur:

l-good sequencing of a partial Steiner system

An ordering of the vertices such that no block is contained in a set of ℓ consecutive vertices.

So precisely if the following does not occur:

It's a cyclically *l-good sequencing* if we include 'wrap-around' sets of consecutive vertices.

A partial (n, k, t)-Steiner system with a cyclically ℓ -good sequencing has:

A partial (n, k, t)-Steiner system with a cyclically ℓ -good sequencing has:

A partial (n, k, t)-Steiner system with a cyclically ℓ -good sequencing has:

▶ an independent set of size ℓ

A partial (n, k, t)-Steiner system with a cyclically ℓ -good sequencing has:

▶ an independent set of size ℓ

A partial (n, k, t)-Steiner system with a cyclically ℓ -good sequencing has:

▶ an independent set of size ℓ

A partial (n, k, t)-Steiner system with a cyclically ℓ -good sequencing has:

- \blacktriangleright an independent set of size ℓ
- a proper colouring with $\left\lceil \frac{n}{\ell} \right\rceil$ colours

A partial (n, k, t)-Steiner system with a cyclically ℓ -good sequencing has:

- \blacktriangleright an independent set of size ℓ
- a proper colouring with $\left\lceil \frac{n}{\ell} \right\rceil$ colours

A partial (n, k, t)-Steiner system with a cyclically ℓ -good sequencing has:

- \blacktriangleright an independent set of size ℓ
- a proper colouring with $\lceil \frac{n}{\ell} \rceil$ colours

Example for $\ell = 6$:

A partial (n, k, t)-Steiner system with a cyclically ℓ -good sequencing has:

- \blacktriangleright an independent set of size ℓ
- a proper colouring with $\lceil \frac{n}{\ell} \rceil$ colours
- a fractional colouring with $\frac{n}{\ell}$ colours

Example for $\ell = 6$:

A partial (n, k, t)-Steiner system with a cyclically ℓ -good sequencing has:

- an independent set of size ℓ
- a proper colouring with $\lceil \frac{n}{\ell} \rceil$ colours
- a fractional colouring with $\frac{n}{\ell}$ colours

Example for $\ell = 6$:

Assign each set of 6 consecutive vertices weight $\frac{1}{n}$

A partial (n, k, t)-Steiner system with a cyclically ℓ -good sequencing has:

- an independent set of size ℓ
- a proper colouring with $\lceil \frac{n}{\ell} \rceil$ colours
- a fractional colouring with $\frac{n}{\ell}$ colours

Example for $\ell = 6$:

Sequencing is harder than colouring, but how much harder?

Kreher, Stinson (2019)

Every (n, 3, 2)-Steiner system with $n \ge 72$ has a 4-good sequencing.

Kreher, Stinson (2019)

Every (n, 3, 2)-Steiner system with $n \ge 72$ has a 4-good sequencing.

Stinson, Veitch (2020)

Every (n, 3, 2)-Steiner system has an ℓ -good sequencing for each $\ell \leq (16n)^{1/6}$.

Kreher, Stinson (2019)

Every (n, 3, 2)-Steiner system with $n \ge 72$ has a 4-good sequencing.

Stinson, Veitch (2020)

Every (n, 3, 2)-Steiner system has an ℓ -good sequencing for each $\ell \leq (16n)^{1/6}$.

Blackburn, Etzion (2021)

Every (n, 3, 2)-Steiner system has a cyclically ℓ -good sequencing for some $\ell \sim (\frac{2}{3}n)^{1/4}$. Every (n, k, t)-Steiner system has a cyclically ℓ -good sequencing for some $\ell = \Theta(n^{1/2t})$.

(All asymptotic notation in this talk is as $n \to \infty$ with k and t fixed.)

Kreher, Stinson (2019)

Every (n, 3, 2)-Steiner system with $n \ge 72$ has a 4-good sequencing.

Stinson, Veitch (2020)

Every (n, 3, 2)-Steiner system has an ℓ -good sequencing for each $\ell \leq (16n)^{1/6}$.

Blackburn, Etzion (2021)

Every (n, 3, 2)-Steiner system has a cyclically ℓ -good sequencing for some $\ell \sim (\frac{2}{3}n)^{1/4}$. Every (n, k, t)-Steiner system has a cyclically ℓ -good sequencing for some $\ell = \Theta(n^{1/2t})$.

(All asymptotic notation in this talk is as $n \to \infty$ with k and t fixed.)

Other work from Kreher/Stinson/Veitch and Erskine/Griggs sequencing designs.

Kreher, Stinson (2019)

Every (n, 3, 2)-Steiner system with $n \ge 72$ has a 4-good sequencing.

Stinson, Veitch (2020)

Every (n, 3, 2)-Steiner system has an ℓ -good sequencing for each $\ell \leq (16n)^{1/6}$.

Blackburn, Etzion (2021)

Every (n, 3, 2)-Steiner system has a cyclically ℓ -good sequencing for some $\ell \sim (\frac{2}{3}n)^{1/4}$. Every (n, k, t)-Steiner system has a cyclically ℓ -good sequencing for some $\ell = \Theta(n^{1/2t})$.

(All asymptotic notation in this talk is as $n \to \infty$ with k and t fixed.)

Other work from **Kreher/Stinson/Veitch** and **Erskine/Griggs** sequencing designs. Connections to powers of hamilton cycles and bandwidth in (hyper)graphs etc etc.

Kreher, Stinson (2019)

Every (n, 3, 2)-Steiner system with $n \ge 72$ has a 4-good sequencing.

Stinson, Veitch (2020)

Every (n, 3, 2)-Steiner system has an ℓ -good sequencing for each $\ell \leq (16n)^{1/6}$.

Blackburn, Etzion (2021)

Every (n, 3, 2)-Steiner system has a cyclically ℓ -good sequencing for some $\ell \sim (\frac{2}{3}n)^{1/4}$. Every (n, k, t)-Steiner system has a cyclically ℓ -good sequencing for some $\ell = \Theta(n^{1/2t})$.

(All asymptotic notation in this talk is as $n \to \infty$ with k and t fixed.)

Other work from **Kreher/Stinson/Veitch** and **Erskine/Griggs** sequencing designs. Connections to powers of hamilton cycles and bandwidth in (hyper)graphs etc etc.

Current contribution

Kreher, Stinson (2019)

Every (n, 3, 2)-Steiner system with $n \ge 72$ has a 4-good sequencing.

Stinson, Veitch (2020)

Every (n, 3, 2)-Steiner system has an ℓ -good sequencing for each $\ell \leq (16n)^{1/6}$.

Blackburn, Etzion (2021)

Every (n, 3, 2)-Steiner system has a cyclically ℓ -good sequencing for some $\ell \sim (\frac{2}{3}n)^{1/4}$. Every (n, k, t)-Steiner system has a cyclically ℓ -good sequencing for some $\ell = \Theta(n^{1/2t})$.

(All asymptotic notation in this talk is as $n \to \infty$ with k and t fixed.)

Other work from **Kreher/Stinson/Veitch** and **Erskine/Griggs** sequencing designs. Connections to powers of hamilton cycles and bandwidth in (hyper)graphs etc etc.

Current contribution

H, Ó Catháin (2022)

Every (n, k, t)-Steiner system has a cyclically ℓ -good sequencing for some $\ell = \Theta(n^{1/t})$.

Kreher, Stinson (2019)

Every (n, 3, 2)-Steiner system with $n \ge 72$ has a 4-good sequencing.

Stinson, Veitch (2020)

Every (n, 3, 2)-Steiner system has an ℓ -good sequencing for each $\ell \leq (16n)^{1/6}$.

Blackburn, Etzion (2021)

Every (n, 3, 2)-Steiner system has a cyclically ℓ -good sequencing for some $\ell \sim (\frac{2}{3}n)^{1/4}$. Every (n, k, t)-Steiner system has a cyclically ℓ -good sequencing for some $\ell = \Theta(n^{1/2t})$.

(All asymptotic notation in this talk is as $n \to \infty$ with k and t fixed.)

Other work from **Kreher/Stinson/Veitch** and **Erskine/Griggs** sequencing designs. Connections to powers of hamilton cycles and bandwidth in (hyper)graphs etc etc.

Current contribution

H, Ó Catháin (2022)

Every (n, k, t)-Steiner system has a cyclically ℓ -good sequencing for some $\ell = \Theta(n^{1/t})$.

Contribution context

Kreher, Stinson (2019)

Every (n, 3, 2)-Steiner system with $n \ge 72$ has a 4-good sequencing.

Stinson, Veitch (2020)

Every (n, 3, 2)-Steiner system has an ℓ -good sequencing for each $\ell \leq (16n)^{1/6}$.

Blackburn, Etzion (2021)

Every (n, 3, 2)-Steiner system has a cyclically ℓ -good sequencing for some $\ell \sim (\frac{2}{3}n)^{1/4}$. Every (n, k, t)-Steiner system has a cyclically ℓ -good sequencing for some $\ell = \Theta(n^{1/2t})$.

(All asymptotic notation in this talk is as $n \to \infty$ with k and t fixed.)

Other work from **Kreher/Stinson/Veitch** and **Erskine/Griggs** sequencing designs. Connections to powers of hamilton cycles and bandwidth in (hyper)graphs etc etc.

Current contribution

H, Ó Catháin (2022)

Every (n, k, t)-Steiner system has a cyclically ℓ -good sequencing for some $\ell = \Theta(n^{1/t})$.

Contribution context

Kostochka, Mubayi, Verstraëte (2014)

There are (n, t + 1, t)-Steiner systems with maximum independent set $\Theta((n \log n)^{1/t})$.

Consider *r* events, where each has probability $\leq p$ and is mutually independent from all but $\leq d$ of the others. If $ep(d + 1) \leq 1$, there is a positive probability that none of the events occur.

Consider *r* events, where each has probability $\leq p$ and is mutually independent from all but $\leq d$ of the others. If $ep(d + 1) \leq 1$, there is a positive probability that none of the events occur.

Poor plan

Consider *r* events, where each has probability $\leq p$ and is mutually independent from all but $\leq d$ of the others. If $ep(d + 1) \leq 1$, there is a positive probability that none of the events occur.

Poor plan

$$(\overline{T}_1)$$
 (\overline{T}_2) (\overline{T}_3) (\overline{T}_4) ...

Consider *r* events, where each has probability $\leq p$ and is mutually independent from all but $\leq d$ of the others. If $ep(d + 1) \leq 1$, there is a positive probability that none of the events occur.

Poor plan

Create s cyclically ordered bins.

$$(T_1)$$
 (T_2) (T_3) (T_4) ...

Place each vertex of an (n, k, t)-Steiner system uniformly at random in one of the bins.

Consider *r* events, where each has probability $\leq p$ and is mutually independent from all but $\leq d$ of the others. If $ep(d + 1) \leq 1$, there is a positive probability that none of the events occur.

Poor plan

- Place each vertex of an (n, k, t)-Steiner system uniformly at random in one of the bins.
- For each block *B*, let E_B be the event that all vertices in *B* go in a single bin.

Consider *r* events, where each has probability $\leq p$ and is mutually independent from all but $\leq d$ of the others. If $ep(d + 1) \leq 1$, there is a positive probability that none of the events occur.

Poor plan

- Place each vertex of an (n, k, t)-Steiner system uniformly at random in one of the bins.
- For each block B, let E_B be the event that all vertices in B go in a single bin.
- E_B is only dependent on events $E_{B'}$ where $|B \cap B'| \ge 1$.

Consider *r* events, where each has probability $\leq p$ and is mutually independent from all but $\leq d$ of the others. If $ep(d + 1) \leq 1$, there is a positive probability that none of the events occur.

Poor plan

- Place each vertex of an (n, k, t)-Steiner system uniformly at random in one of the bins.
- For each block *B*, let E_B be the event that all vertices in *B* go in a single bin.
- E_B is only dependent on events $E_{B'}$ where $|B \cap B'| \ge 1$.
- ► The LLL says we can avoid all of the events for some $s = \Theta(n^{(t-1)/(k-1)})$.

Consider *r* events, where each has probability $\leq p$ and is mutually independent from all but $\leq d$ of the others. If $ep(d + 1) \leq 1$, there is a positive probability that none of the events occur.

Poor plan

- Place each vertex of an (n, k, t)-Steiner system uniformly at random in one of the bins.
- For each block *B*, let E_B be the event that all vertices in *B* go in a single bin.
- E_B is only dependent on events $E_{B'}$ where $|B \cap B'| \ge 1$.
- ► The LLL says we can avoid all of the events for some $s = \Theta(n^{(t-1)/(k-1)})$.
- ► This produces a proper colouring with one colour class per bin.

Consider *r* events, where each has probability $\leq p$ and is mutually independent from all but $\leq d$ of the others. If $ep(d + 1) \leq 1$, there is a positive probability that none of the events occur.

Poor plan

$$(T_1)$$
 (T_2) (T_3) (T_4) ...

- Place each vertex of an (n, k, t)-Steiner system uniformly at random in one of the bins.
- For each block *B*, let E_B be the event that all vertices in *B* go in a single bin.
- E_B is only dependent on events $E_{B'}$ where $|B \cap B'| \ge 1$.
- ► The LLL says we can avoid all of the events for some $s = \Theta(n^{(t-1)/(k-1)})$.
- ► This produces a proper colouring with one colour class per bin.
- Arbitrarily order the vertices within each bin to produce a sequencing.

Consider *r* events, where each has probability $\leq p$ and is mutually independent from all but $\leq d$ of the others. If $ep(d + 1) \leq 1$, there is a positive probability that none of the events occur.

Pretty poor plan

- Place each vertex of an (n, k, t)-Steiner system uniformly at random in one of the bins.
- For each block *B*, let E_B be the event that all vertices in *B* go in a single bin.
- E_B is only dependent on events $E_{B'}$ where $|B \cap B'| \ge 1$.
- ► The LLL says we can avoid all of the events for some $s = \Theta(n^{(t-1)/(k-1)})$.
- ► This produces a proper colouring with one colour class per bin.
- Arbitrarily order the vertices within each bin to produce a sequencing.

Consider *r* events, where each has probability $\leq p$ and is mutually independent from all but $\leq d$ of the others. If $ep(d + 1) \leq 1$, there is a positive probability that none of the events occur.

Pretty poor plan

Create s cyclically ordered bins.

(T_1) (T_2) (T_3) (T_4) ...

- Place each vertex of an (n, k, t)-Steiner system uniformly at random in one of the bins.
- For each block *B*, let E_B be the event that all vertices in *B* go in two consecutive bins.
- E_B is only dependent on events $E_{B'}$ where $|B \cap B'| \ge 1$.
- ► The LLL says we can avoid all of the events for some $s = \Theta(n^{(t-1)/(k-1)})$.
- ► This produces a proper colouring with one colour class per bin.
- Arbitrarily order the vertices within each bin to produce a sequencing.

Consider *r* events, where each has probability $\leq p$ and is mutually independent from all but $\leq d$ of the others. If $ep(d + 1) \leq 1$, there is a positive probability that none of the events occur.

Pretty poor plan

Create s cyclically ordered bins.

(T_1) (T_2) (T_3) (T_4) ...

- Place each vertex of an (n, k, t)-Steiner system uniformly at random in one of the bins.
- For each block *B*, let E_B be the event that all vertices in *B* go in two consecutive bins.
- E_B is only dependent on events $E_{B'}$ where $|B \cap B'| \ge 1$.
- ► The LLL says we can avoid all of the events for some $s = \Theta(n^{(t-1)/(k-1)})$.
- ► This produces a more than proper colouring with one colour class per bin.
- Arbitrarily order the vertices within each bin to produce a sequencing.

Consider *r* events, where each has probability $\leq p$ and is mutually independent from all but $\leq d$ of the others. If $ep(d + 1) \leq 1$, there is a positive probability that none of the events occur.

Pretty poor plan

Create s cyclically ordered bins.

(T_1) (T_2) (T_3) (T_4) ...

- Place each vertex of an (n, k, t)-Steiner system uniformly at random in one of the bins.
- For each block *B*, let E_B be the event that all vertices in *B* go in two consecutive bins.
- E_B is only dependent on events $E_{B'}$ where $|B \cap B'| \ge 1$.
- ► The LLL says we can avoid all of the events for some $s = \Theta(n^{(t-1)/(k-1)})$.
- ► This produces a more than proper colouring with one colour class per bin.
- Arbitrarily order the vertices within each bin to produce a sequencing.

Consider *r* events, where each has probability $\leq p$ and is mutually independent from all but $\leq d$ of the others. If $ep(d + 1) \leq 1$, there is a positive probability that none of the events occur.

Pretty poor plan

Create s cyclically ordered bins.

(T_1) (T_2) (T_3) (T_4) ...

- Place each vertex of an (n, k, t)-Steiner system uniformly at random in one of the bins.
- For each block *B*, let E_B be the event that all vertices in *B* go in two consecutive bins.
- E_B is only dependent on events $E_{B'}$ where $|B \cap B'| \ge 1$.
- ► The LLL says we can avoid all of the events for some $s = \Theta(n^{(t-1)/(k-1)})$.
- ► This produces a more than proper colouring with one colour class per bin.
- Arbitrarily order the vertices within each bin to produce a sequencing.

• Possible problems only if some bin has fewer than $\ell - 1$ vertices.

▶ We're okay if each bin has at least ℓ - 1 vertices, so suppose some bin D does not. We'll try to move vertices into D without causing further problems.

- We're okay if each bin has at least ℓ − 1 vertices, so suppose some bin D does not. We'll try to move vertices into D without causing further problems.
- Call the vertices within $\ell 1$ of the bin ends *buffers* (there's at most $2s(\ell 1)$ of them). Other vertices are *available*.

- We're okay if each bin has at least ℓ − 1 vertices, so suppose some bin D does not. We'll try to move vertices into D without causing further problems.
- Call the vertices within $\ell 1$ of the bin ends *buffers* (there's at most $2s(\ell 1)$ of them). Other vertices are *available*.
- Call an available vertex *bad* if bringing it to *D* would result in a block in $D \cup L$ or in $D \cup R$.

- We're okay if each bin has at least ℓ − 1 vertices, so suppose some bin D does not. We'll try to move vertices into D without causing further problems.
- Call the vertices within $\ell 1$ of the bin ends *buffers* (there's at most $2s(\ell 1)$ of them). Other vertices are *available*.
- Call an available vertex *bad* if bringing it to *D* would result in a block in $D \cup L$ or in $D \cup R$.
- We can bound the number of bad vertices in terms of s and ℓ .

- We're okay if each bin has at least ℓ − 1 vertices, so suppose some bin D does not. We'll try to move vertices into D without causing further problems.
- Call the vertices within $\ell 1$ of the bin ends *buffers* (there's at most $2s(\ell 1)$ of them). Other vertices are *available*.
- Call an available vertex *bad* if bringing it to *D* would result in a block in $D \cup L$ or in $D \cup R$.
- We can bound the number of bad vertices in terms of s and ℓ .
- If *n* is large enough relative to *s* and ℓ , there is an available non-bad vertex.

- We're okay if each bin has at least ℓ − 1 vertices, so suppose some bin D does not. We'll try to move vertices into D without causing further problems.
- Call the vertices within $\ell 1$ of the bin ends *buffers* (there's at most $2s(\ell 1)$ of them). Other vertices are *available*.
- Call an available vertex *bad* if bringing it to *D* would result in a block in $D \cup L$ or in $D \cup R$.
- We can bound the number of bad vertices in terms of s and ℓ .
- If *n* is large enough relative to *s* and ℓ , there is an available non-bad vertex.
- ▶ This vertex can be moved into *D* without causing problems.

Patched proof

- We're okay if each bin has at least ℓ − 1 vertices, so suppose some bin D does not. We'll try to move vertices into D without causing further problems.
- Call the vertices within $\ell 1$ of the bin ends *buffers* (there's at most $2s(\ell 1)$ of them). Other vertices are *available*.
- Call an available vertex *bad* if bringing it to *D* would result in a block in $D \cup L$ or in $D \cup R$.
- We can bound the number of bad vertices in terms of s and ℓ .
- If *n* is large enough relative to *s* and ℓ , there is an available non-bad vertex.
- ► This vertex can be moved into *D* without causing problems.
- We can repeat this until all bins have size at least $\ell 1$.

Patched proof

- We're okay if each bin has at least ℓ − 1 vertices, so suppose some bin D does not. We'll try to move vertices into D without causing further problems.
- Call the vertices within $\ell 1$ of the bin ends *buffers* (there's at most $2s(\ell 1)$ of them). Other vertices are *available*.
- Call an available vertex *bad* if bringing it to *D* would result in a block in $D \cup L$ or in $D \cup R$.
- We can bound the number of bad vertices in terms of s and ℓ .
- If *n* is large enough relative to *s* and ℓ , there is an available non-bad vertex.
- ► This vertex can be moved into *D* without causing problems.
- We can repeat this until all bins have size at least $\ell 1$.

For (n, t + 1, t)-Steiner systems, this patching only alters the ℓ by a constant factor.

Patched proof

- We're okay if each bin has at least ℓ − 1 vertices, so suppose some bin D does not. We'll try to move vertices into D without causing further problems.
- Call the vertices within $\ell 1$ of the bin ends *buffers* (there's at most $2s(\ell 1)$ of them). Other vertices are *available*.
- Call an available vertex *bad* if bringing it to *D* would result in a block in $D \cup L$ or in $D \cup R$.
- We can bound the number of bad vertices in terms of s and ℓ .
- If *n* is large enough relative to *s* and ℓ , there is an available non-bad vertex.
- ► This vertex can be moved into *D* without causing problems.
- We can repeat this until all bins have size at least $\ell 1$.

For (n, t + 1, t)-Steiner systems, this patching only alters the ℓ by a constant factor. But for (n, k, t)-Steiner systems with $k \ge t + 2$, it's much worse than this.

H, Ó Catháin (2022)

Every partial (n, k, t)-Steiner system has a cyclically ℓ -good sequencing for each $\ell \leq cn^{1/t}$ where *c* is the positive real number satisfying

$$\frac{2^{t+1}-1}{t!}c^t+2\left(\frac{e(t+1)(2^{t+1}-1)}{t!}\right)^{1/t}c=1.$$

For k = 3, t = 2, we have $c \approx 0.0908$. For k = 4, t = 3, we have $c \approx 0.164$.

H, Ó Catháin (2022)

Every partial (n, k, t)-Steiner system has a cyclically ℓ -good sequencing for each $\ell \leq cn^{1/t}$ where *c* is the positive real number satisfying

$$\frac{2^{t+1}-1}{t!}c^t+2\left(\frac{e(t+1)(2^{t+1}-1)}{t!}\right)^{1/t}c=1.$$

For k = 3, t = 2, we have $c \approx 0.0908$. For k = 4, t = 3, we have $c \approx 0.164$.

H, Ó Catháin (2022)

Every partial (n, k, t)-Steiner system has a cyclically ℓ -good sequencing for each $\ell \leq cn^{1/t}$ where *c* is the positive real number satisfying

$$\frac{2^{t+1}-1}{t!}c^t+2\left(\frac{e(t+1)(2^{t+1}-1)}{t!}\right)^{1/t}c=1.$$

For k = 3, t = 2, we have $c \approx 0.0908$. For k = 4, t = 3, we have $c \approx 0.164$.

Insufficiently investigated issues

▶ What's the best ℓ for (n, t + 1, t)-Steiner systems? Work of Kostochka/Mubayi/Verstraëte implies $\ell = O((n \log n)^{1/t})$. Work of Eustis/Verstraëte implies $\ell \leq (3n \log n)^{1/2}$ for t = 2.

H, Ó Catháin (2022)

Every partial (n, k, t)-Steiner system has a cyclically ℓ -good sequencing for each $\ell \leq cn^{1/t}$ where *c* is the positive real number satisfying

$$\frac{2^{t+1}-1}{t!}c^t+2\left(\frac{e(t+1)(2^{t+1}-1)}{t!}\right)^{1/t}c=1.$$

For k = 3, t = 2, we have $c \approx 0.0908$. For k = 4, t = 3, we have $c \approx 0.164$.

- ▶ What's the best ℓ for (n, t + 1, t)-Steiner systems? Work of Kostochka/Mubayi/Verstraëte implies $\ell = O((n \log n)^{1/t})$. Work of Eustis/Verstraëte implies $\ell \leq (3n \log n)^{1/2}$ for t = 2.
- What about other Steiner systems?

H, Ó Catháin (2022)

Every partial (n, k, t)-Steiner system has a cyclically ℓ -good sequencing for each $\ell \leq cn^{1/t}$ where *c* is the positive real number satisfying

$$\frac{2^{t+1}-1}{t!}c^t+2\left(\frac{e(t+1)(2^{t+1}-1)}{t!}\right)^{1/t}c=1.$$

For k = 3, t = 2, we have $c \approx 0.0908$. For k = 4, t = 3, we have $c \approx 0.164$.

- ▶ What's the best ℓ for (n, t + 1, t)-Steiner systems? Work of Kostochka/Mubayi/Verstraëte implies $\ell = O((n \log n)^{1/t})$. Work of Eustis/Verstraëte implies $\ell \leq (3n \log n)^{1/2}$ for t = 2.
- What about other Steiner systems?
 - ▶ Here, we can improve the value of *c* a bit, but we suspect our bound sucks anyhow.

H, Ó Catháin (2022)

Every partial (n, k, t)-Steiner system has a cyclically ℓ -good sequencing for each $\ell \leq cn^{1/t}$ where *c* is the positive real number satisfying

$$\frac{2^{t+1}-1}{t!}c^t+2\left(\frac{e(t+1)(2^{t+1}-1)}{t!}\right)^{1/t}c=1.$$

For k = 3, t = 2, we have $c \approx 0.0908$. For k = 4, t = 3, we have $c \approx 0.164$.

- ▶ What's the best ℓ for (n, t + 1, t)-Steiner systems? Work of Kostochka/Mubayi/Verstraëte implies $\ell = O((n \log n)^{1/t})$. Work of Eustis/Verstraëte implies $\ell \leq (3n \log n)^{1/2}$ for t = 2.
- What about other Steiner systems?
 - ▶ Here, we can improve the value of *c* a bit, but we suspect our bound sucks anyhow.
 - Non-LLL probabilistic bin methods probably improve our result (but maybe still suck).

H, Ó Catháin (2022)

Every partial (n, k, t)-Steiner system has a cyclically ℓ -good sequencing for each $\ell \leq cn^{1/t}$ where *c* is the positive real number satisfying

$$\frac{2^{t+1}-1}{t!}c^t+2\left(\frac{e(t+1)(2^{t+1}-1)}{t!}\right)^{1/t}c=1.$$

For k = 3, t = 2, we have $c \approx 0.0908$. For k = 4, t = 3, we have $c \approx 0.164$.

- ▶ What's the best ℓ for (n, t + 1, t)-Steiner systems? Work of Kostochka/Mubayi/Verstraëte implies $\ell = O((n \log n)^{1/t})$. Work of Eustis/Verstraëte implies $\ell \leq (3n \log n)^{1/2}$ for t = 2.
- What about other Steiner systems?
 - ▶ Here, we can improve the value of *c* a bit, but we suspect our bound sucks anyhow.
 - Non-LLL probabilistic bin methods probably improve our result (but maybe still suck).
- What about hypergraphs in general?

H, Ó Catháin (2022)

Every partial (n, k, t)-Steiner system has a cyclically ℓ -good sequencing for each $\ell \leq cn^{1/t}$ where *c* is the positive real number satisfying

$$\frac{2^{t+1}-1}{t!}c^t+2\left(\frac{e(t+1)(2^{t+1}-1)}{t!}\right)^{1/t}c=1.$$

For k = 3, t = 2, we have $c \approx 0.0908$. For k = 4, t = 3, we have $c \approx 0.164$.

- ▶ What's the best ℓ for (n, t + 1, t)-Steiner systems? Work of Kostochka/Mubayi/Verstraëte implies $\ell = O((n \log n)^{1/t})$. Work of Eustis/Verstraëte implies $\ell \leq (3n \log n)^{1/2}$ for t = 2.
- What about other Steiner systems?
 - ► Here, we can improve the value of *c* a bit, but we suspect our bound sucks anyhow.
 - Non-LLL probabilistic bin methods probably improve our result (but maybe still suck).
- What about hypergraphs in general?
 - Our methods apply to general hypergraphs under certain degree conditions.

H, Ó Catháin (2022)

Every partial (n, k, t)-Steiner system has a cyclically ℓ -good sequencing for each $\ell \leq cn^{1/t}$ where *c* is the positive real number satisfying

$$\frac{2^{t+1}-1}{t!}c^t+2\left(\frac{e(t+1)(2^{t+1}-1)}{t!}\right)^{1/t}c=1.$$

For k = 3, t = 2, we have $c \approx 0.0908$. For k = 4, t = 3, we have $c \approx 0.164$.

- ▶ What's the best ℓ for (n, t + 1, t)-Steiner systems? Work of Kostochka/Mubayi/Verstraëte implies $\ell = O((n \log n)^{1/t})$. Work of Eustis/Verstraëte implies $\ell \leq (3n \log n)^{1/2}$ for t = 2.
- What about other Steiner systems?
 - ► Here, we can improve the value of *c* a bit, but we suspect our bound sucks anyhow.
 - Non-LLL probabilistic bin methods probably improve our result (but maybe still suck).
- What about hypergraphs in general?
 - Our methods apply to general hypergraphs under certain degree conditions.
 - Pavez-Signé/Sanhueza-Matamala/Stein effectively look at the case where ℓ is constant as n grows. (An ℓ-good sequencing of a hypergraph is equivalent to a power of a hamilton cycle in its complement.)

The terminus