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Steiner systems

(n, k, t)-Steiner system
A collection of k-subsets (blocks) of a set of n vertices such that any t vertices occur together in
exactly one block.

It’s a partial (n, k, t)-Steiner system if any t vertices occur together in at most one block.

(We always assume n > k > t ⩾ 2.)

Example: an (8, 4, 3)-Steiner system

1236 1248 1257 1345 1378 1467 1568
2347 2358 2456 2678 3468 3567 4578

(n, t + 1, t)-Steiner systems are of particular interest.
(n, 3, 2): Steiner triple systems (n, 4, 3): Steiner quadruple systems.
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Sequencing Steiner systems

ℓ-good sequencing of a partial Steiner system
An ordering of the vertices such that no block is contained in a set of ℓ consecutive vertices.

So precisely if the following does not occur:

ℓ

It’s a cyclically ℓ-good sequencing if we include ‘wrap-around’ sets of consecutive vertices.



Sequencing Steiner systems

ℓ-good sequencing of a partial Steiner system
An ordering of the vertices such that no block is contained in a set of ℓ consecutive vertices.

So precisely if the following does not occur:

ℓ

It’s a cyclically ℓ-good sequencing if we include ‘wrap-around’ sets of consecutive vertices.



Sequencing Steiner systems

ℓ-good sequencing of a partial Steiner system
An ordering of the vertices such that no block is contained in a set of ℓ consecutive vertices.

So precisely if the following does not occur:

ℓ

It’s a cyclically ℓ-good sequencing if we include ‘wrap-around’ sets of consecutive vertices.



Sequencing Steiner systems

ℓ-good sequencing of a partial Steiner system
An ordering of the vertices such that no block is contained in a set of ℓ consecutive vertices.

So precisely if the following does not occur:

ℓ

It’s a cyclically ℓ-good sequencing if we include ‘wrap-around’ sets of consecutive vertices.



Sequencing Steiner systems

ℓ-good sequencing of a partial Steiner system
An ordering of the vertices such that no block is contained in a set of ℓ consecutive vertices.

So precisely if the following does not occur:

ℓ

It’s a cyclically ℓ-good sequencing if we include ‘wrap-around’ sets of consecutive vertices.



Sequencing Steiner systems

ℓ-good sequencing of a partial Steiner system
An ordering of the vertices such that no block is contained in a set of ℓ consecutive vertices.

So precisely if the following does not occur:

ℓ

It’s a cyclically ℓ-good sequencing if we include ‘wrap-around’ sets of consecutive vertices.



Colouring connections

A partial (n, k, t)-Steiner system with a cyclically ℓ-good sequencing has:
▶ an independent set of size ℓ

▶ a proper colouring with ⌈ n
ℓ
⌉ colours

▶ a fractional colouring with n
ℓ

colours

Example for ℓ = 6:

Assign each set of 6 consecutive vertices weight 1
n

Sequencing is harder than colouring, but how much harder?
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Previous papers

Kreher, Stinson (2019)
Every (n, 3, 2)-Steiner system with n ⩾ 72 has a 4-good sequencing.

Stinson, Veitch (2020)
Every (n, 3, 2)-Steiner system has an ℓ-good sequencing for each ℓ ⩽ (16n)1/6.

Blackburn, Etzion (2021)
Every (n, 3, 2)-Steiner system has a cyclically ℓ-good sequencing for some ℓ ∼ ( 2

3 n)1/4.
Every (n, k, t)-Steiner system has a cyclically ℓ-good sequencing for some ℓ = Θ(n1/2t).
(All asymptotic notation in this talk is as n → ∞ with k and t fixed.)

Other work from Kreher/Stinson/Veitch and Erskine/Griggs sequencing designs.
Connections to powers of hamilton cycles and bandwidth in (hyper)graphs etc etc.

Current contribution
H, Ó Catháin (2022)
Every (n, k, t)-Steiner system has a cyclically ℓ-good sequencing for some ℓ = Θ(n1/t).

Contribution context
Kostochka, Mubayi, Verstraëte (2014)
There are (n, t + 1, t)-Steiner systems with maximum independent set Θ((n log n)1/t).
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Lovász local lemma
Consider r events, where each has probability ⩽ p and is mutually independent from all but ⩽ d
of the others. If ep(d + 1) ⩽ 1, there is a positive probability that none of the events occur.

Poor plan
▶ Create s cyclically ordered bins.

T1 T2 T3 T4

▶ Place each vertex of an (n, k, t)-Steiner system uniformly at random in one of the bins.
▶ For each block B, let EB be the event that all vertices in B go in a single bin.
▶ EB is only dependent on events EB′ where |B ∩ B′| ⩾ 1.
▶ The LLL says we can avoid all of the events for some s = Θ(n(t−1)/(k−1)).
▶ This produces a proper colouring with one colour class per bin.
▶ Arbitrarily order the vertices within each bin to produce a sequencing.

T1 T2 T3 T4

T2 T3 T4

▶ Possible problems only if some bin has fewer than ℓ− 1 vertices.



Lovász local lemma
Consider r events, where each has probability ⩽ p and is mutually independent from all but ⩽ d
of the others. If ep(d + 1) ⩽ 1, there is a positive probability that none of the events occur.

Poor plan

▶ Create s cyclically ordered bins.

T1 T2 T3 T4

▶ Place each vertex of an (n, k, t)-Steiner system uniformly at random in one of the bins.
▶ For each block B, let EB be the event that all vertices in B go in a single bin.
▶ EB is only dependent on events EB′ where |B ∩ B′| ⩾ 1.
▶ The LLL says we can avoid all of the events for some s = Θ(n(t−1)/(k−1)).
▶ This produces a proper colouring with one colour class per bin.
▶ Arbitrarily order the vertices within each bin to produce a sequencing.

T1 T2 T3 T4

T2 T3 T4

▶ Possible problems only if some bin has fewer than ℓ− 1 vertices.



Lovász local lemma
Consider r events, where each has probability ⩽ p and is mutually independent from all but ⩽ d
of the others. If ep(d + 1) ⩽ 1, there is a positive probability that none of the events occur.

Poor plan
▶ Create s cyclically ordered bins.

T1 T2 T3 T4

▶ Place each vertex of an (n, k, t)-Steiner system uniformly at random in one of the bins.
▶ For each block B, let EB be the event that all vertices in B go in a single bin.
▶ EB is only dependent on events EB′ where |B ∩ B′| ⩾ 1.
▶ The LLL says we can avoid all of the events for some s = Θ(n(t−1)/(k−1)).
▶ This produces a proper colouring with one colour class per bin.
▶ Arbitrarily order the vertices within each bin to produce a sequencing.

T1 T2 T3 T4

T2 T3 T4

▶ Possible problems only if some bin has fewer than ℓ− 1 vertices.



Lovász local lemma
Consider r events, where each has probability ⩽ p and is mutually independent from all but ⩽ d
of the others. If ep(d + 1) ⩽ 1, there is a positive probability that none of the events occur.

Poor plan
▶ Create s cyclically ordered bins.

T1 T2 T3 T4

▶ Place each vertex of an (n, k, t)-Steiner system uniformly at random in one of the bins.

▶ For each block B, let EB be the event that all vertices in B go in a single bin.
▶ EB is only dependent on events EB′ where |B ∩ B′| ⩾ 1.
▶ The LLL says we can avoid all of the events for some s = Θ(n(t−1)/(k−1)).
▶ This produces a proper colouring with one colour class per bin.
▶ Arbitrarily order the vertices within each bin to produce a sequencing.

T1 T2 T3 T4

T2 T3 T4

▶ Possible problems only if some bin has fewer than ℓ− 1 vertices.



Lovász local lemma
Consider r events, where each has probability ⩽ p and is mutually independent from all but ⩽ d
of the others. If ep(d + 1) ⩽ 1, there is a positive probability that none of the events occur.

Poor plan
▶ Create s cyclically ordered bins.

T1 T2 T3 T4

▶ Place each vertex of an (n, k, t)-Steiner system uniformly at random in one of the bins.
▶ For each block B, let EB be the event that all vertices in B go in a single bin.

▶ EB is only dependent on events EB′ where |B ∩ B′| ⩾ 1.
▶ The LLL says we can avoid all of the events for some s = Θ(n(t−1)/(k−1)).
▶ This produces a proper colouring with one colour class per bin.
▶ Arbitrarily order the vertices within each bin to produce a sequencing.

T1 T2 T3 T4

T2 T3 T4

▶ Possible problems only if some bin has fewer than ℓ− 1 vertices.



Lovász local lemma
Consider r events, where each has probability ⩽ p and is mutually independent from all but ⩽ d
of the others. If ep(d + 1) ⩽ 1, there is a positive probability that none of the events occur.

Poor plan
▶ Create s cyclically ordered bins.

T1 T2 T3 T4

▶ Place each vertex of an (n, k, t)-Steiner system uniformly at random in one of the bins.
▶ For each block B, let EB be the event that all vertices in B go in a single bin.
▶ EB is only dependent on events EB′ where |B ∩ B′| ⩾ 1.

▶ The LLL says we can avoid all of the events for some s = Θ(n(t−1)/(k−1)).
▶ This produces a proper colouring with one colour class per bin.
▶ Arbitrarily order the vertices within each bin to produce a sequencing.

T1 T2 T3 T4

T2 T3 T4

▶ Possible problems only if some bin has fewer than ℓ− 1 vertices.



Lovász local lemma
Consider r events, where each has probability ⩽ p and is mutually independent from all but ⩽ d
of the others. If ep(d + 1) ⩽ 1, there is a positive probability that none of the events occur.

Poor plan
▶ Create s cyclically ordered bins.

T1 T2 T3 T4

▶ Place each vertex of an (n, k, t)-Steiner system uniformly at random in one of the bins.
▶ For each block B, let EB be the event that all vertices in B go in a single bin.
▶ EB is only dependent on events EB′ where |B ∩ B′| ⩾ 1.
▶ The LLL says we can avoid all of the events for some s = Θ(n(t−1)/(k−1)).

▶ This produces a proper colouring with one colour class per bin.
▶ Arbitrarily order the vertices within each bin to produce a sequencing.

T1 T2 T3 T4

T2 T3 T4

▶ Possible problems only if some bin has fewer than ℓ− 1 vertices.



Lovász local lemma
Consider r events, where each has probability ⩽ p and is mutually independent from all but ⩽ d
of the others. If ep(d + 1) ⩽ 1, there is a positive probability that none of the events occur.

Poor plan
▶ Create s cyclically ordered bins.

T1 T2 T3 T4

▶ Place each vertex of an (n, k, t)-Steiner system uniformly at random in one of the bins.
▶ For each block B, let EB be the event that all vertices in B go in a single bin.
▶ EB is only dependent on events EB′ where |B ∩ B′| ⩾ 1.
▶ The LLL says we can avoid all of the events for some s = Θ(n(t−1)/(k−1)).
▶ This produces a proper colouring with one colour class per bin.

▶ Arbitrarily order the vertices within each bin to produce a sequencing.

T1 T2 T3 T4

T2 T3 T4

▶ Possible problems only if some bin has fewer than ℓ− 1 vertices.



Lovász local lemma
Consider r events, where each has probability ⩽ p and is mutually independent from all but ⩽ d
of the others. If ep(d + 1) ⩽ 1, there is a positive probability that none of the events occur.

Poor plan
▶ Create s cyclically ordered bins.

T1 T2 T3 T4

▶ Place each vertex of an (n, k, t)-Steiner system uniformly at random in one of the bins.
▶ For each block B, let EB be the event that all vertices in B go in a single bin.
▶ EB is only dependent on events EB′ where |B ∩ B′| ⩾ 1.
▶ The LLL says we can avoid all of the events for some s = Θ(n(t−1)/(k−1)).
▶ This produces a proper colouring with one colour class per bin.
▶ Arbitrarily order the vertices within each bin to produce a sequencing.

T1 T2 T3 T4

T2 T3 T4

▶ Possible problems only if some bin has fewer than ℓ− 1 vertices.



Lovász local lemma
Consider r events, where each has probability ⩽ p and is mutually independent from all but ⩽ d
of the others. If ep(d + 1) ⩽ 1, there is a positive probability that none of the events occur.

Pretty poor plan
▶ Create s cyclically ordered bins.

T1 T2 T3 T4

▶ Place each vertex of an (n, k, t)-Steiner system uniformly at random in one of the bins.
▶ For each block B, let EB be the event that all vertices in B go in a single bin.
▶ EB is only dependent on events EB′ where |B ∩ B′| ⩾ 1.
▶ The LLL says we can avoid all of the events for some s = Θ(n(t−1)/(k−1)).
▶ This produces a proper colouring with one colour class per bin.
▶ Arbitrarily order the vertices within each bin to produce a sequencing.

T1 T2 T3 T4

T2 T3 T4

▶ Possible problems only if some bin has fewer than ℓ− 1 vertices.



Lovász local lemma
Consider r events, where each has probability ⩽ p and is mutually independent from all but ⩽ d
of the others. If ep(d + 1) ⩽ 1, there is a positive probability that none of the events occur.

Pretty poor plan
▶ Create s cyclically ordered bins.

T1 T2 T3 T4

▶ Place each vertex of an (n, k, t)-Steiner system uniformly at random in one of the bins.
▶ For each block B, let EB be the event that all vertices in B go in two consecutive bins.
▶ EB is only dependent on events EB′ where |B ∩ B′| ⩾ 1.
▶ The LLL says we can avoid all of the events for some s = Θ(n(t−1)/(k−1)).
▶ This produces a proper colouring with one colour class per bin.
▶ Arbitrarily order the vertices within each bin to produce a sequencing.

T1 T2 T3 T4

T2 T3 T4

▶ Possible problems only if some bin has fewer than ℓ− 1 vertices.



Lovász local lemma
Consider r events, where each has probability ⩽ p and is mutually independent from all but ⩽ d
of the others. If ep(d + 1) ⩽ 1, there is a positive probability that none of the events occur.

Pretty poor plan
▶ Create s cyclically ordered bins.

T1 T2 T3 T4

▶ Place each vertex of an (n, k, t)-Steiner system uniformly at random in one of the bins.
▶ For each block B, let EB be the event that all vertices in B go in two consecutive bins.
▶ EB is only dependent on events EB′ where |B ∩ B′| ⩾ 1.
▶ The LLL says we can avoid all of the events for some s = Θ(n(t−1)/(k−1)).
▶ This produces a more than proper colouring with one colour class per bin.
▶ Arbitrarily order the vertices within each bin to produce a sequencing.

T1 T2 T3 T4

T2 T3 T4

▶ Possible problems only if some bin has fewer than ℓ− 1 vertices.



Lovász local lemma
Consider r events, where each has probability ⩽ p and is mutually independent from all but ⩽ d
of the others. If ep(d + 1) ⩽ 1, there is a positive probability that none of the events occur.

Pretty poor plan
▶ Create s cyclically ordered bins.

T1 T2 T3 T4

▶ Place each vertex of an (n, k, t)-Steiner system uniformly at random in one of the bins.
▶ For each block B, let EB be the event that all vertices in B go in two consecutive bins.
▶ EB is only dependent on events EB′ where |B ∩ B′| ⩾ 1.
▶ The LLL says we can avoid all of the events for some s = Θ(n(t−1)/(k−1)).
▶ This produces a more than proper colouring with one colour class per bin.
▶ Arbitrarily order the vertices within each bin to produce a sequencing.

T1

T2 T3 T4

T2 T3 T4

▶ Possible problems only if some bin has fewer than ℓ− 1 vertices.



Lovász local lemma
Consider r events, where each has probability ⩽ p and is mutually independent from all but ⩽ d
of the others. If ep(d + 1) ⩽ 1, there is a positive probability that none of the events occur.

Pretty poor plan
▶ Create s cyclically ordered bins.

T1 T2 T3 T4

▶ Place each vertex of an (n, k, t)-Steiner system uniformly at random in one of the bins.
▶ For each block B, let EB be the event that all vertices in B go in two consecutive bins.
▶ EB is only dependent on events EB′ where |B ∩ B′| ⩾ 1.
▶ The LLL says we can avoid all of the events for some s = Θ(n(t−1)/(k−1)).
▶ This produces a more than proper colouring with one colour class per bin.
▶ Arbitrarily order the vertices within each bin to produce a sequencing.

T1

T2 T3 T4

T2 T3 T4

▶ Possible problems only if some bin has fewer than ℓ− 1 vertices.



Patched proof

DL R

▶ We’re okay if each bin has at least ℓ− 1 vertices, so suppose some bin D does not. We’ll
try to move vertices into D without causing further problems.

▶ Call the vertices within ℓ− 1 of the bin ends buffers (there’s at most 2s(ℓ− 1) of them).
Other vertices are available.

▶ Call an available vertex bad if bringing it to D would result in a block in D ∪ L or in D ∪ R.
▶ We can bound the number of bad vertices in terms of s and ℓ.
▶ If n is large enough relative to s and ℓ, there is an available non-bad vertex.
▶ This vertex can be moved into D without causing problems.
▶ We can repeat this until all bins have size at least ℓ− 1.

For (n, t + 1, t)-Steiner systems, this patching only alters the ℓ by a constant factor.
But for (n, k, t)-Steiner systems with k ⩾ t + 2, it’s much worse than this.
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Result review

H, Ó Catháin (2022)
Every partial (n, k, t)-Steiner system has a cyclically ℓ-good sequencing for each ℓ ⩽ cn1/t

where c is the positive real number satisfying

2t+1 − 1
t!

ct + 2
(

e(t + 1)(2t+1 − 1)
t!

)1/t
c = 1.

For k = 3, t = 2, we have c ≈ 0.0908.
For k = 4, t = 3, we have c ≈ 0.164.

Insufficiently investigated issues

▶ What’s the best ℓ for (n, t + 1, t)-Steiner systems?
Work of Kostochka/Mubayi/Verstraëte implies ℓ = O((n log n)1/t).
Work of Eustis/Verstraëte implies ℓ ⩽ (3n log n)1/2 for t = 2.
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▶ Pavez-Signé/Sanhueza-Matamala/Stein effectively look at the case where ℓ is

constant as n grows. (An ℓ-good sequencing of a hypergraph is equivalent to a power of a
hamilton cycle in its complement.)



Result review
H, Ó Catháin (2022)
Every partial (n, k, t)-Steiner system has a cyclically ℓ-good sequencing for each ℓ ⩽ cn1/t

where c is the positive real number satisfying

2t+1 − 1
t!

ct + 2
(

e(t + 1)(2t+1 − 1)
t!

)1/t
c = 1.

For k = 3, t = 2, we have c ≈ 0.0908.
For k = 4, t = 3, we have c ≈ 0.164.

Insufficiently investigated issues

▶ What’s the best ℓ for (n, t + 1, t)-Steiner systems?
Work of Kostochka/Mubayi/Verstraëte implies ℓ = O((n log n)1/t).
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▶ Pavez-Signé/Sanhueza-Matamala/Stein effectively look at the case where ℓ is

constant as n grows. (An ℓ-good sequencing of a hypergraph is equivalent to a power of a
hamilton cycle in its complement.)



Result review
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